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by

A. I .  Green t and P. M. Na t ~hdi~

Abs t r a c t .  This paper i s  concerned with  t .hermomechanics of thin sh e l l s  by a
direct .  approach based on the theory of a Coss erzi t  sur face  compri sing a t w o —
dimens iona I su r faco  and a single director :~t . tac}icd to every p o i n t  of the
sur face .  In a üno~t a I 1 prey ious developments el’ the Llie rmo— mechani ca l  the ory of
sh e l l s  by direct approach , only one tempera t a r t  V ie  id has been n itmi tted . This
a l low s for the chnracter l~ ation of t emperatur e cls n~ es a long som e referen ce
surface , such as the middle surface , of the ( th r ee—d imen sion a l )  sh e l l - l i k e
body , but not for t emperature changes along the ch el thickness.  A ma in
purpose of the present study is to incorporate the latter effect into the
theory ; and , in the context of the theory of a Coss~ rat  sur face , this is
achieved by a recent approach to thermomechanics (Gre en and Naghdi l ’)77 ) wh ich
provides a natura l way of introducing two (or more) temperature fields at each
materia l point of the surface. Apart from full  discussion of t .liermomechanies
of shells and thermod.ynamical restrictions arising frcin the sec~nd law ofth ermodynamics for shel ls , at tent ion is given to a discussion of symmetri es
(including material symmetries) and therma l efl’ects in the nonlinear theory of
elastic shells with detailed discussion of the linear theory of elastic plates .
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1. Introduction

This paper is concerned with th nnomct ’lo n i e s  1sf thin 5111 1 Ii by a direct

‘pp ro: c li b a s I d  on the theory of C o i s e r a t .  ~ t r  d i r  c tod~ s u rf a c e s .  A L ’~.ssct’a t

surface is a body (~ compris in~ 
a two — i U s et  IS I t i s t  I s~~r fa  Cc ( ‘m~ Ido l i n a

l’bc lidean 3— sp a ct ~ ) and a ingi e director (1 . e . . 1 t’U i b v t e t  r I a i ~t :i shed

t~ ~v cry point of the oiu’f:ice. ~ ‘ mprehenr iv 0 s .  s i t  i t ’ t h i  t . I i t ’ri noilyistmiea l

theory of a i ’o s scr at  sur face —— herea fter ties i~~o t d C —— l a d  i t s  appJ i cation

t .t shell theory, together wi th  an historical survey and a large number of

relevant referenc es is et ntained in an ar t icle  by Nug l id i  ( 1~~72 ) .  For c lar i t y ’s

sake , we may recall tha t the mater ial  surface of C c:~n be id o n t .t f i e d  w ith a

pa rticular reference surface (often taken to be an interior sur face 1 in the

three-dimensional shell-like body , e . g . ,  the middl e surface of the shell in

som e fixed reference configuration; the director at each point is regarded as

represent ing the mater ial fil ament across the re ference  surface~ and the

component of the director along the normal of the reference surf~ce can be

taken as a measure of shell thickness.

Throughout our previous developments of the thermo-mechanical theory of

shells by direct approach (Green et al. 1965, Green and Naghdi 1970, Naghdi 1972),

only one temperature field has been admitted and this allows for the characteriza-

tion of temperature changes along the reference surface of the shell-like body.

Fome indication of ho’,i temperature changes across the r e fe rence  surface ~ t’ the

shell-like body could he dealt with has been given in the papers ot ’ Naghdi ( i . k 1 1 4 1

and of ~~een and Naghdi (l.)70,1J71 , by using three-dimensional approximations .

~ne author , Zhilin (l.Y (ti), has considered two temperature fields in a direct

theory and we refer again to this paper below.

The body C is taken to model sane of the properties of a three-dimensional
body of shell-like character . When the director is absent it reflects the
properties of’ a material  surface which can be the bounding surface between
two different bodies or a surface in free space.
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Recently mechanical and thermo-mechanical theories of a membrane , regarded

as a two-dimensional surface in a Euclidean 3-space , have been published by

Gur t in and Murdocti ( 19714,19(5) and by Murdoc h (ltYTba ,b ) ,  where the surface is

mainly regarded as 8 bounding surfuce of a body or as an interface betw een

ambient media in which diffusion through the in t e r face  is neglected . Although

these authors have placed special emphasis on residual stress and surface

tension in the m~ nbr ane surface , apart from notat ion , all their basic equations

are  special cases ci’ those given previously. Murdoch (ith ’ sa ) ,  however , modified

the entropy inequality used in earlier work in order to account for ambient

temperatures in the surr ounding media which may be different fr om each other

and fr ein the temperature of the interface , but with the temperature being every-

where continuous . In a second paper , Murdoch ( 1976h ) seeks to show tha t his

inequality Is in line with three-dimensional considerations of’ Green and

Naghdi ( l9’7O ) , but the present authors believe that the new inequality given

by Murdoch is unsatisfactory, especially when only one temperature field is

allowed for the interface. It appears that ther e may he contusion between

boundary values of’ temperatur e and entropy with those field quantities which

should enter any entropy inequality . We believe that the type of problem con-

sidered by Murdoch can only be discussed satisfactorily on the basis of a two-

dimensional model for the interface If more than one temperatur e field is

admitted . In the context of’ a direct appr oach based on a Cosserat surface ,

~hilIn (1q76) formulates a theory in which two temperatur e fields are admitted ;

and he postulates two entropy inequa litites , but only one ener~~r equation for

the surface. i~ine e this provides only one field equation for the two tempera-

tures , ~h IJ In  arbitrarily rewrites the energy field equation as a set of two

differential equations . The physical basis for these two equations , which have

not been obtained fran any clearly stated bairuce laws , is obscure. It is dif-

ficult te see any relation between the work of ~hilin and that d iscussed in

2.
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the present paper .

Although widespread use ot ’ the Clausius-Duhem inequal i t ies  l e t s  been made

in three , two and one—dimensional continuum thermodynamics , t 1i~ ss ineq u a l i t i es

nave f oen subj ec t  to the cri ticism that in some circumstances they do not

reflect adequately ideas associated with the Second Law of Thermodynamics.

�een and Naghd i (lo~ 7) have developed a new approach to three-dimensional

continuum thermomechanics which is independent of any particular mathematical

expression of’ the second law and which imposes some restrictions on the

constitutive assumptions leading to a reduction of a number of’ independent

respons e functions (or functionals) in the set of constitutive assumptions.

In the present paper the sam e approach is used for the gosserat surface and

this provides a natural way of introducing two (or more ) temperature fields~

When the director is absent , the theory reduces to that of a material surface

which may be a surface in free space or a material surface between two dif-

ferent media . The contrast between the present theory and that  of Murdoch

(1976a ) is illustr ated by an example in §10. ‘n the other hand , for an elastic

material with one director and only one temperature field , we recover afl the

previous two-dimensional results. In addition , when we admit two temperature

fields , results for an elastic plate a~~’ee with thos e found previous l y by

Green and Naghdi (1970 ) fr ~~i three-dimensional considerations .

Specifically, the contents of the paper are as follows. ~
‘et’t.ion 2 conta ins

a concise summary of the various basic results of the purely mechanical theory

of a Cosserat surface with a single director . With reference to thermal

properties , in §3 we admit at each material point of the surface of C a number

of different two-dim ensional temperatures and different  two-dimensional entropies ,

as well as related thermal fields ; and , in parallel with two-dimensiona l

~For the pur ely mechanical theory, it is already known how to extend the theory
with more than one director ; see , e.g., Green and Naghdi (l)’t’ ’).
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conservation laws for balances of mass and momenta , we postulate balances of

entropy . Next , we recall the balance of’ energy for the Cosserat surface; and ,

following the recent approach of Green and Naghd i (1977), after elimination of’

the assigned fields -- i.e ., assi~ ied force , assigned director force and

external rates of supply of entropy -- regard the resulting equation as an

identity to be satisfied for all thermo-mechanical processes . In §14, we

bri efly discuss thermoelastic theory of’ a Cosserat surfa ce on the ‘asi s of the

new procedure in thermomechanlcs (see §3 ’l and also compare the results with

earlier developments ( see Green et al. lQ6’~; Naghdl 1972) involving only a

single temperature.

A new inequality representing the second law of thermodynamics for shells

based on the present authors ’ earlier work (Green and Naghdi l977 ,197~~~, along

with restrictions on heat f].wc vectors and the specific internal energy are

obtained in §5 and §8, respectively , while ft6-7 contain a discussion of

relevant results for shells obtained from the three-dimensional theory. The

last two sections (**9-10 l are devoted to a discussion of’ syninetries (including

material symmetries ) for shells and the linear thermoelastic theory of’ isotropic

plates . The developments in §~9-lO supplement our earlier results by direct

approach (Green and Naghd .i 1970,1971) for thermoelastic shells in the pr esence

of a single temperature.

The general theory given her e is lainediately availabl e for problems in

which the effect of’ surface tension and interfacial energies in a membrane

surface are important , but we do not consider such problems in detail . Further

discussion is necessary if’ there is diffusion across an interface , both in the

context of the membrane theory and the theory of a Cosserat surface.

14.
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2. ~‘tumnary of mechanical theory.

We susinarize in this section the main kinematics and the basic equations

of the purely mechanical theory of a Cosserat surface C and refer the reader

to Naghdi (1~ 72~ for details and additiona l references on the subject.  Let

the particles of the material surface of (3 be identified wi th  a system of

conveeted coordinates 8~ ( a =  1,2)  and let the surface of’ C in the present

configuration at time t , hereafter referred to as J, occupy a two-dimensional

region of’ space ft bounded by a closed curve ~R. Similarly , in the present

configuration , an arbitrary material surface of’ C occupies a portion of’ the

two-dimensional region ft , which we denote by P (ca) bounded by a closed

curve ~P. Let r and d -- each a function of and t -- denote, respectively,

the position vector of a typical point of j  relative to a fixed origin and

the director at r. Then, the base vectors along the 9w-curves on ? are

defined by

= a(9~,t) = ~rJ~~e
r
~ , (2.1)

and we denote the unit norma l to .1 by ~~(9~,t). Also

a — a  . a  , a .a — 6  , a — a  a

~a ‘—a -6
(2.2)

a = det a~~ , [~~~~83
] > 0 =

where is the Kronecker delta and a~ are contravariant base vectors .

A motion of the Cosserat surface is defined by

r = r(9~,t) , ci = d,(e~,t ) (2.3’)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .  
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and we assume that d is nowhere tangent to d, so tha t d~ C . The velocity

and the director velocity vectors are given by

where a superposed dot deno tes differentiation with respect to t , holding ~~
fixed. Thronghout this paper we use standard vector and tensor notations (see

Naghd i 1~~ 2 ) .  Greek indices take the values l ,~? and the  usual summation con-

‘~ ‘nt ien ~wt ’r a Greek superscript and a subscript is employed .

¼ onaider now a reference configuration, wh ich we take to be the initial

configuration , of the Cosserat surface C. Let the reference sur face in this

. ‘ t ’~.gurat ion be referred to by ~ with R as its position vector ; let A and A ,
— - -—0

denote , respectively , the base vector s along the es-curves on ~ and the unit

normal to ~~; and let I) he the reference director at R.  Then ,

R ~ Rc ~e~
) 

~ r~ 9~ ,0) , ~ D(e~) = d(e~,o) , A = ~RJ~e~ (2 .~~

and

Aa . A a 6 ~ ,

4
A det A~~ , I -

~~ 0 , A~A
3 ~~ X

We assume that the kinetic energy per unit area of the surface of C in the

present configuration is given by

T * 
~ ~ L ’ v +2k

’
~v . w +k 2w .w ’)

wher e p~~ p~ 9’1
~t~ is the mass per unit area of J and the inertia coefficient .s

k ,k ’ nrc functions of and independen t of t. We define momenta corresponding

to v and w as

RI 6.
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r ~~~~~~

~~~~v ’ k ’ ’
~I~~= 1  ~~~~~~~~~~~ ~Li~.~t .)~~) — 

~~ 

•)~~ ~•0

~~~ ~~~ ~~[r~~( ( ~~~~ k~ + d i ~~ k 1 v~ k ’ W~~ )Lt .~

= ~~~~~~~~~~~~~~~ ~r \ ~~~+ d x ~’1~~k‘P

In ~~~~~~ l~~) to ~:. ~~~ ~~~
= 

~~~ 
e~1t is  t he t’orce vaL ’t or nid ~“ v ’ the

director t’orc~’ ~.e L .tor t at ~iu’ curve ~~~‘. whe re v is t h e  o~ t w a r ~i u n i  nortaa l t o

~P

= v a . l, . .~~— __

The v cot or field r~ in t, ~ .11 “ is the  interna l LI ireotor :cr c per ~n t a r~ a 01’ 
•S

t~ I i t  m a - ~es no cc~ t r U  ~~t i on  t o  t h e  moment  o t ’ momentum ~‘~~ ait ion . :\1 ~~

~( ~ V is th e  ass  i ~ned ~‘orct ’ v cot or and £ = ~~ t is I he a

director force e, ’t  or  a r  ‘an i t mass. ihese include cont it-u t ions ~ hi oh o~ie~
the  a ct ion ot ’ for ces  over  the ma ,~or surt’aces of a shell .

• i’he v Oc t or N , which rt’pr es ents 1’orce per un it le ngt h , has t e d linens ion ~r;’ 
- I

where Ml and [I] a t .an~1 for the physical di mens ions of mass and t i m e .  11’ i-he
director ~ has the dimension of lengt h t hen k1 •k are ~timension.less and M hasthe same dimension as N. I f  d is dimenst oniess then ~ has the  d imension  M~- T ’
where ( U  is the physical dimension of length . I n  the la tter cnse~ M is some-
times called a dire ct -or couple.

0~~~~~~~~~~~~~~~
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Under suitable continuity assumptions the curve force vector N and the

director force vector P4 can be expressed as

N = N ~v , M ’ M ~v , (2.lL~)— — a — — a

where Na,M~ transform as contr avariant sur face veotors . The local f ield equations

corresponding ti’ (2.~~I to (~2 . t 2 ” are then

= or p 4 pa~~. V = C ,

¼ a
~~~~

’1
a

+
~~~~ = X (~~+k

1
~

\ 
• ( 2 . l o~

(a’M~~ + = rna~ + X~ k1v +  k2’w) , (2.17 )

a x N a 4 d x m + d  X M a = 0 ,
—~~ — — — —, a — —

wher e a comas denotes partial differentiation .

In the absence of’ the director , the field equations for the surface are

reduced to (2.15 ) together with

(a
~~~

)
a
+X

~~
= x~r , ~~~x N ~~ = c . (2.lQ\

These are one form of membrane equations of motion. The component forms of

these equations were noted by Green et al. (1965, ~7) and were derived from an

energy equation together with invariance conditions under superposed rigid body

motions . For a more general derivation using invariance conditions and a

further discussion of the membrane theory , see Naghdi (1972 , pp. 1487-14 ’.k’ and

pp. “I~o-5l4 7 ’t . If an interface between two ambient media is r egarded to he a

membrane surface , then the membrane equations for the interface must be

supplemented of course by appropriate equations for each media .

S. 
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‘h’ ’rma 1 pr perti’s. Th -rmod ynam . ca~ theor~~~ I’ ii  ~. i  I

mos t  ex i s t  C ~~~~~~~~~~~~~~ on the theory f 5 0
0 . t i’f c~ u l y  One t~ mj -  ~‘at~ !e

~ ~d L ’ ’ Wni t I ~~ ‘~nd t h i s  1: r -o -  r J - d aS re t-r - - ni  h:o h~. ‘ -mpt r~ t ~r \ ‘ 1 ’ i : L ~ !.

- S - no ~‘ :~~-~
-
~ 

•
~~~

• e .i r t a o ’  • ao Ii as I : ’  mLiii - .‘ r  I - c  - t io - — 1 1 1 t ) L i~~ ’ .

Iso , ~~ t ’ t ’ct f the the rm a l L u w iar y  c L - u u i  i ~~~ on -he Ss ,,~i - t  ~i - C ~~5 I

÷
- ~~~~~~ ~ 

. ody r e I t~c~ rpor :O ~I l~~t 0 th  - - I h o~’ t t uu u~’h ~ l ie - N t  N~ ’ 1 : ‘ i r  i c e  5:

:‘ s~~’ p y  o i  h e a t .  The v a n - - t ons ~- t t t a .- t eI : la r:  . ur~- loa~’ t l i t . stas i - - ic~. n - ~ s

at. t. tj et.-n mcdi i ~ed so far  by a dj r e ~ t ~a: r c : - c h  ~~i H i l t :  t h e  ~c L r  f t.h t ’ th~’.r’y

- I’ Oos. ’ er a t  s ir fac  . ~ l th c ’ h son ~n d t c : t i o n s  t. - t h L W  this ccu~ d Ut. f l’ect ~ i i:

b:o i i it  in  some ~~~~ r k a th T’t’~L t  ‘ s t  10 : ‘l~e i i  from the three—dimi ns ion : oquat  I

Ly  the as : ent - j u t  h-cr: a~zhdi . - ~~ , -~ir eo n and N i t  ~hi d i I ~ 
) ad in ~. he mon o ’: 1Th

~y :;~i~thdi (~~ ‘2) .  As ii I r  R~~’ noted in §1 , b e cau s e  t . I ’ t h e  t : t . - w  a pp r o ac h  t~ H. m c —

mechanics of coat Lana i n t ro du c e d  rec ent  ~y (~ir t . ’ct. ad Na g hdi t~~ :1 ,i~) 
~8 • it is

:uw pcssible to - c c :u n t  in a mor e  ~.nt ’ra manner f r the t h i t r m a  I p r cp t .’rt Les of a

sh e l l—lik e body in the dir - -ct f or m u l a  t ion of the t h eory  h : sed  on a Cosscrat .  su r face.

Thus , at  ebchl  material point of the material surface o±~ C, we i ntroduce the

scala r fie1ds~ e= e(e~ , t ’t and B,~= eN (e~,t ) ,  (N= 1,2,... ,K ’t , representing the

effects of the t emperature variation in a shell-like body: the surface tempera-

ture 9, which we require to be positive , represents the absolute temperature in

the reference sur face  of the shell-like body . while the scalars account for the

t~~np er: tur e variations along the thickness of the shel l .  In addi t ion to the

temperature : 9 and 9.~
, w o admit the existence of externa L rates of suppl y of

he at  r = r ( 9 ’
~, t ) , r N = r N (9 ’Y .t )  per unit  n s a  of J and external r a t c a  of c~ r~’e

supply of heat -h. _ h
N Per unit  length act ing across the boundary ~~~~~ . A l s o , we

~The t erminology of major surfaces refer s to the upper and low er sur f a ce s  of
the  body separated by the thickness of the shell .

~No confusion should arise from the use of the symbol 9 In t h e  designation of
the  tt~nper a tur e f ields by 

~~~~~~~ •9~ and the n o t a t i o n  a’~-~ (9
1 ,92 1 for the

convect  ~‘d coordinates .

The externa l r at - e s  of supply of heat r and r N inc i udi ’ contr ibutions corresponding t o
hea t fluxes cii the ma j or surfaces of the shel l .  They ‘r o  n~ t the Sam e as quan t i t i es
defined with a s imilar notation in Green and Naghdi ç l ’) ’ T C ’ or in N :’ghii t i  ( l t . ) ’ 2 1 . 

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ .: ~~~~~~~~~~~~~ - 
-
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assume the existence of interna l curve fluxes of heat -h= -h(9~
’,t ; ‘a),

-h .~= _ h
N (&~,t v )  across each curve ~P; the fields h and h.~, called heat fluxes

and measured per unit length per unit tim e~ assum e the values h and on ~~,

re sp ect ive ly. rrne total externa l rate of supply of heat per unit mass of S

is defined as

IN-

r ÷  r~1 . (~~.i )
N~ l

~ii~iIarIy, the total external  r at e of suppl y of heat per unit l en gt h  per un i t

time across ~R ~nd the total internal curve flux of heat across ~~ pt-n unit

l e a~ th  per unit t imt~ are defined , re spe ct ively ,  by

K K
- h -  ~ h and -h -  

~
. h~ . (3.2)

N=l N N=1

We now define the ratios of the heat supplies r and r
N to temperatures 9

and 9.,, respectively, as s=s (~~ ,t) and sN
=s

N(8 ,t )  and call these the external

rates of supply of entropy per unit mass of 
~~~

. Further we define the ratios of

h and h to the temperatures 9 and 9N’ respectively , as the external rates

curve supplies of entr opy k and k
N 

per unit length of ~R; and , similarly , we

def in e  the ratios of h and hN tc the temperatures 9 and 9~, respectively , as

the internal curve fluxes of entropy k = k ( & ~
’,t ; v )  and kN = k N (9 ’

~, t ; v ’ per unit

length of ~P. The above definitions may conveniently be summarized by

s = r / 9  , s
N =r N//~~ ‘ ~~~~~~~~~~ ,

(3.3)
k = h / 9 , k N = 1N B N

—

We require that the fields SN , kN , kN , defined by 
~~~~~ 

~ all tend to finite

limits as for each N = 1 ,2,...,K.

t
The sign convention for the internal curve fluxes of heat are such that these
fields -h and -h N represent fluxes entering P across the boundar y “~urve ~P.

- 
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In addition to the thermal fields already introduced , throughout VS we

assum e the existence of scaler fields q = ’~(e~,t )  and flN T1
N

(9
~~,t ) ,  called

specif ic  entropies and internal rates of production of entropies

~~~
= ~(e~,t) and ~N =~~N(9~ ,t) per unit- mass of VS . The contributions of these

internal rates of production of entropies to the interna l rate of production of

heat is

K
9F~+ E 9N~N (3 . I~)

N=l

-
~ per unit mass.

We now postulate balances of entropy for every material surface of 
~ 

occupying
*a part P in the present configuration and write

$ p (s+~ )d~~~$ k ds , H = $ p~~d~ , (3 .5)

= 
$

p (s
N
+
~N

)d
~~-$ 

kN ds ( N = l ,2 , . . . ,K) , = SP~N~ 
. (3.6)

By usual procedures , it can be shown from (3 .5) and (3.6) that k and k
N are

linear functions of v, i.e.,

(3.7)
= ‘ b-i = 

~N ~~
where p,~~ are called entropy flux vectors. Then, from 

~~~~~~ 
and

h = 8p •v , h
N = 9N~~~~

’
~ 

(no sum on N) (3.8)

and we may define heat flux vectors q,~~ by

q = 9p = 9N~~ 
(no sum on N)

- 

~~ : (3.~
)

hN =
~~~~~

v

A motivation for postulating equations (3 .5)  and (3 .6) for balances of entropy
is provided by consideration of derivations from three-dimensional equations
in~~7.

_ _
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Under suita ble continuity as8t~ ptions and with the use of (3.7), th e fi eld

equation s resulting from (3 . h ) and (3.6’) are

pT~ p( s  + - div p

+ - d lv  ~~

where

I l~~div p ~ a - ‘ (a~’ p~~l , div ~~ a - ’~ a °p~~’t

W~.- now introduce the f irst  law of thermodynamics or t h e  balance 01’ energy

for the Cosserat surfact- C. This states that heat and mechanical  energy are

equivalent and that together they are conserved for every material sur face ci’ C.

- 

I Thus , with referenc e to the present configuration, the balance 01’ energy may Etc

stated in the forni t

~~ 
v+:k1v. w +k 2v . w) c)pda

= $ ( r 4  
~ 

r N i f . v + L . w ) p d e
P N=l “ —

K
+ $ (N. v + M ’ w - h -  E h )ds ,

N=l N

where c = ~ (9~’, t )  is the internal energy per unit ma ss of 
~~~

. With the help of

~d.1.2 h to (2.l~
t ’ , (3.t.)) and ~3.10) and under suitable continuity assumptions .

th e field equation resulting from (S.1’l 1 is

K K K
- - - 

N=l ~N~
N ’) - p ( 9~ ~ 

N~l 
9N~N

’ - p .  g -  
N~l

+N ~~.v ~m .w +M ~~.w = 0
— —, ~~ — — —, ~~

where the tem peratur e gradients g and are defined by

tSee Green and Naghdi (19-17 ) for further remarks on this in the context of
the three-dimensional theory .
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( 1 ’)  The f i eld equations are assumed to hold for arbi trary choice of the

functions ¼$ .l7 St including , if’ required , an arbi t rary choic e of the rp ac  and

tm ’ derivatives of these functions ;

~ 
St The fields (~ .1’ ) are calculated from their r ’sn~-~’t i y e  c ’cnst i t u t -  I y e

equat lons

(3 ‘~ lb  s, values ci’ the variables t, ~ • I~ St can then be foi aid from t h e  hut l ances

of momenta (:~.th) and (2.1-7 ) and balances of entropy (3 .10St~

( I~ ‘t [‘he oquat- ion  ¼~ • 1$ ‘I resiti I ing from the h u t  l ance  01’ moment of moment.tun,

and the equation (
~~

. i u ~ ) resu],tin~ from the -ncr ~ y equation , will he regar hs -d as

identitIes for every choice of ( ~ .171 . This w ill p l n c o  r e st r i ct i o n s  on the

constitutive equations

1~ - note that the quantities 
~~~~~~~~~~ 

may he arbitrary to the extent of
K

additiv e functions ~~~~~~~~~~ -‘9f - E 8’-~
’
N ’ 

respectively, where f,f~1 are
N~ I

arbitrary functions of the variables (3.1’!), their space and time der iva t ives

and functionals of their histories . The additive functions have the property

t h a t  th ey make no contribution to the differential equations for r ,d , 9 , B N and

t in ’ boundary and initial conditions . They also make no contribution to the

energy ident i ty  (~~.le) and no contribution to the internal energy c . We remove

t h i s  arbitrariness by setting

f = f(&~’) , f f (e~’) , f ~ , f 0 • ( ,~~~ol

ThE- n • ti: functions !~. 
~ N 

ar e - ~1e t-~-’rmii ’n ’~l uni quely and art- only arbitrary Ic t h e

A A
ex tent - s t  ‘t sIsit t Ivs ’ t ’: :n5 ’t i - n : ’ ot ’ 8~, independent of t . The func t ions  f .  in 13 .

‘\
~ e au

b u s  he determined by : 1’ s - C l  fy in ~ values for ~ T~~ in Ome ref erence stat e

~‘o far  no meat Ion baa been made s ’t ’ rcsl.rictior s on constittitive equ; t b its

wt: I ci: ma~ ar 1 ae from some form ‘t ’ second law c~’ thermod~ynain1cs usually

~~‘or a more elaborat e parallel discussion in the context - of the three-d imensiona l
t heory , see u~rp - e’n and Nnghdi ()) ‘ “~

‘,*2 1 . 
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Ic — Fxterna l mech.nical work supplied to a pert p of the shell during the
time interval t 1 ~ t ~ t2

• r 2 s  ( f . v + I . w ) p ~~~~+ $  ( N . v + M . w ) d ~ ]dt
t i, p

a AK + A E + ( ~ + t ~~

and

1$ — E~cternal heat supplied to a part P Jf the shell durth~ the t ime

interval t~ ) t I t2

t K - K
E r  1 p d a - I  (

~~ E q~, ) . v d s]dt
t1 ‘ P N”l N ‘

~ P N l

where

$2 $  p( e~~’ ÷ £ 8 )~ )d~ dt p w d ~ dt , (3• 2 l~t1 P N 1  ti
p

K and E stand for the kinetic and internal energies defined by

K = j ’ ~ (v 2 + 2k1v • w + k2w2 )p d~ , F $ p i  da , (3 .25 1

respectively, and where the prefix A denotes the difference operation on functions

and fields during the time interval [t1,t2
], e.g., AE -. E(t

2
)-E(t

1). Also , w in

(3.2l
~
)
2 

is given by 

K

~~~~~~~~~~~~~~~~~~~~~~~~ E T I~ 9N ) + N
~~

.v  + m .w + t4~~.w
N=l ‘.

‘~~~

-

+ P ( $~~ E ON~N
)
~~~~~~ £ , (~~.i~~)

Nal N 1
K

• C ’ - Oi~’ - E $N1~r~ 
. ¼ • ~

‘-
~
‘ I

N-i

The foregoing discussion of thermodynamics of shells inc l udes , of course,

the thermodynamics of’ a m~nbrane sur face or an interface. Re~ulta of’ this

kind can be recovered by deleting the terms which involve the director.

16.
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1~. Thermoelui~ t tc  theory of a Cosserat surface. ‘~

(‘rot- b it:: work en the thiermce I as t ic theory of a ( ‘era era t siu’ ftc s ’S - ninsl - ‘m ’ e

et ’ a two dimons I ou ts C iuctt ~ lus — E~uhem inequality and only O h s , ’ temperature l ’i ci d

Wa a c~ in : Lds ,’x - -d , which ~‘crr ‘u pend:’ to the a u i r I ’:sc o I s, ’unns ‘ x ’u t  t u e  - 

~ at ’ the ~~~~
‘ ‘ : ‘ . h i t

(‘a pt-i ’ ( a~ ’e Naghdi 1 s~ ~~ s • \~s,’ s,’eii:: Ider now cc- l i :  t i t  itt l t ’ s~ equal I cii:-: l’s ’t ’ a tItermo —

o I:i :’ t I ,‘ ‘oS a era t a su’ Its ce which ndznj I a K+l tempera I ; in e I ’ l s ’ I  sir and we ex:’inj fl

the i’s,-a t rict~ ions  i mp o s e d  on t-hs ’ae equations is~ t h e  procedur e i s - a c r i  iced a t  the

end of §3.

vs,’ t iasum e that  the ae’t- ~ i’ variables

~~~~~~~~~~~~~~~~~~~~~~~~~ 

(I~.l)

are functions of the set

(l~.2)

as wel l as the reference values

A ,D , D ,8 , (t ~.~~I

and in addition may depend also on the particle e~. In the set of reference

values (I~.3), 9 is the constant r e f er ence value of 9 and we have assumed the

re ference valu es of 9~ (N=l ,2,...,K ’1 to be zero. ~~stponin g the restrictions

to be imposed by the invariance requirem ent s under superpos ed ri gid-body motions

and recalling the procedur e outlined in §3 , the c’net’gy equation ( 3 . l u ,s) is

identically satisfied for nil thermo-mechanical processes provided

= 0 , ~~~~~~~ = 0

and

L 

17.
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A
$ = $(a ,d,d ‘8’8N ~~~~~~~~~~~~~~~ e~) , (14.5) F_

= 

~~~~ 

= P p ,

II ‘ ~ N 
~

8N 
.1,

K K
Q~e~~ ~2. 9N~N 

+ p~ g ±  ~ 0 , (14.8)
N=l N=l

A
where as indicated in ~~~ the function ~ is independent of the temperature

gr adients  ~~ and ~~~~~~. Formulae ~~~~~ and ~
14.i)i, with 9N absent from (14.5),

were obtained by Naghdi (l~ 72 , Sec. 131 with  ths ,- help of the Clausius-Duhem

inequality and he also showed how to obtain alternative forms with the help of

invariance conditions under superposed rigid body motions . In this connection,

it may ‘L ’e recalled that - in the discarsion of some forms of’ the const i tut ive

equations t’or an elastic ~‘osserut surface , Naghdi (1972 , ~‘ec. 13) at f i rs t

indicated the dependence of the response functions on the properties of a

physically preferred reference state and material inhomogeneity through the

argu ment 9~ and subsequently specified a more explicit dependence on the

reference values such as ( 14 .3) in order to obtain other forms of constitutive

-.~‘quat-ions in terms of relative kinematic measures. Results for an elastic

m~~brane or a n interface si’ egar ded as membrane) follow from (14.~) to (14.8)

i~’ sui~~r ersing the directors D ,d i”~d omitting the responsu functions for M’~ ,rn.

It is now convenient to intr oduce the component form Cl’ the kinematic

variables d,d relative to the base vectors a~ or a
1
, and the component form

— ~~~~~

ci ’ P,D r e la t i v e  to  A or Thus , we write
—

The influence of the reference geometry on the rosponse of elastic shells has
i’s , c i ’c examined also by Carroll and Naghdi sj~?’ i’2 1 who assumed the existence ci’ a
local preferred state of the body and then stipulated that the influence of the
reference geometry , as in ( 1 4 . 5 ) ,  occurs thr ough the va lues  of the constitutj ve
variables in the preferred state.

18.
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d = d ,a = s 1 ~~~ , d = X  a = ) ,  a .
— 1—.. —.1 —‘ , cy  icy—i .~~,—1

P = P A
1 

~ ‘ D~A . , D A , A~’ = A
1 

A ,—1 ~~ .cy ~~~~~ .~~.4

ore ’

d = d . a , , 1~ = a
1
~ d , \ ,  = ~I a = 9ii )s,i — -4 ,~ 

,
~ 

-
~~~ cy “-‘1 . icy

P = D . ~~\ ,  . I = ’~
fl , A = D  ‘ A . , A1 

= A ”~A ,i — _-~1 j icy -.,cy —1

= a~~’ = 0 ~~ = 1 A~~ = A ’~
’ = 0 , A~

3 = 1

and

= d
cy~~~ - bcy~

d
3 

= d 3 cy + h
~
d
B

A
a 

= - , ~~ = D 3 + L~ D

In the above formul ae , a single v er t i c a l  bar stands for covariant differentiat ion

using Christo ffel  symbols formed from a , a double vertical line denote ::

covariant differentiation using Christoffel symbols formed from A
cy~ 

and

- 
- b = a , a , B = A . A (14.12)

‘—,~ —a,B ~B —3 -‘--
~~~,~~~

are the coeff ic ients of the second fundamental form of the sur faces  J and 5~.

respectively.

With the help ci’ invariance conditions under superposed rigid body met ions

t h e  cons titut iv~,- equn t- I our ¼ ~~. S t o  ¼ 14 .7 ’ may be expre ’s sod ii: an a 1 terna 1 iv t ’

• form which w i l l  be u t i l i zed  later in the paper y Cui d s r such me t ions the v e c t o r :’

:1 ,d ,d become Q a , Q d , Q d • where Q is a proper cr1 hogona I t ’u i i~~t i e:u ci ’— —, V — —
~ — — — —, ‘Y —

+
the time , and, the valu e $ of the re sp on se  C’si n-,’t ion in ( 14. ‘ a ” a g iv sat by

1’See Nnghdi j-i’T, Sect. 13).
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’ 

~~~~~ 
~~~~ 9N’ ~~~~~~

‘ 
~~~
‘ ~~~~~~ ~~~ e~) . (14.13)

We assume that the value of the free energy is unaltered by supe-rposcd rigid

body met Ions so that $

“ 
= or

~~
‘ —

~
‘ 

~~~~~~~~~~~~~ 
= ~(a ,d,d ,...) (14.114)

for all proper orthogonal tensors Q. At this point it should be mentioned

that those who prefer the concept of’ ot-j octivity will make the statement ( 14.1 14)

for the full orthogonal group.

Assuming first that (14.114) holds only for the proper orthogonal group for

Q th en fr om Cauchy ’s representation theorem $ may be expressed as a different

function of the inner products and, scalar triple products of a ,d,d , namely

a • a  = a  , a . d = d  , a . d ,  =~~~-
~~ —B c~ —a — —~ —, ~~

(14 .15)
d .  d = dt d , d .  d = d~ X , d . d = ) 5,

i 
Xj — ~~~~ icy —,~~ ~~~~~ .cy

and

= a~d3 ~ ~~~~~~~~ 
= a X 3cy ~

( 14.io)
[a d d I = d3€ X’

~
’ + c d’~

’ 
•

~ia •B .
~~~ cy.y

In view of (2 .2 )
5 k [a 1~~ a

3
] = a 2 >0 , so that a~ can be expressed as a single-

valued funct ion of acy~
. It then follows from (14.15) and (14.16) that $ may he

expressed as a single-valued function of ~~~~~~~~~~ the remaining contributions

in (14.16) being redundant. Similarly, if we make the other choice of the norma l

a
3 

in (2 .2)  so that (~~~ ,2a
3

] = - as’, we may again reduce to be a single-valued

function ot’ a~~~~dj~ X jcy . Moreover , when [~~,~~ A
3 J > 0  or -< 0 , we may express A

3 
as

a single-valued ftnction of A , and replace the dependence of $ on A ,D,D~~ by

20.



A , fl . ,,\, . i s - i t o -  ~ ) 1t replaced by  the di f’ferent single—valued fw~ ’ t iont
__ 1 

‘; = 
~
(a
~~

,d i.X j ,9,9N ~~~~~ ‘~~~~~~~~~ ‘~~~ 
(~~.i~’)

I - i  ~~~ 
~~~~~~ 

~ ‘i d’ - not  - i’ ’::p -o t  ~ V e ~~~ \ , the ‘s ’i ’-n ~~~ , - l t t  of ~~~~~~~~ ‘s ies l  flt rs ’l ’ i’~~’ ’ I to

t h e, i as v o ’ t u r a  
~~~~ 

, j  .5 - .

= ~~~~~~~~ = W~’a. , = m~’a ,  . ( 14.18)
— “—1 —‘ ~ 5], —

ft n , w i t h  t h e  hol ci ’ 
~~~~~~ and  ( 14. 10 ) ,  i t  I’o l l o w a  from (14.5), ( 1 4 . o ) ,  (14.7) and

~14 .i-~’) that

ml 
= p ~~~~~~

- , = p

N ’~~ = = (— ~~-- +
.y ~~~~~

(14.lct )

~~~~~~~~~~~~ ~~~~~~~~~~~~~ = 0 ,3v “V

11- ‘ N

Apart from the last formula in (14.19), the above results are equivalent to those

given by Green , Naghdi and Wainwright (1965). The moment of momentum equation

(2.18) is satisfied by (14.19)314 .

In order to complete the discussion of invariance under superposed rigid

body motions it remains to consider 
~‘~~~‘~~‘~ N ’ For example, recalling

we have th e constitut ive relat ion

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

,D D ~~
1
,~~~; ~ )

subject to the condition

tThe response function 
‘
~~ in (14.17) exhibits explicitly di ’pei ide - i ic e on th e b a s i s

in the reference configuration of the surface of C. since 
~~

‘ is a sca .la r-
valued funct ion , its dependence on A w ill he through A = A  . A

-a

21.
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B, B1~1~ 9-~ ~~~ . . • )

— 

“
~~
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’ ~ 
. . .

for al 1 proper ur t !ls s n a  I I ‘nsor :~ c~ . l~’~ a li ac’ s as len simi 1 ar i o h a t  i~~cd f~ r

-
~~ , i t  follows that can I-c ‘~,t~r eased  in t he  djfft-r - -nt f u i tct  lof l ic  I form

= ~~~~~~~~~~~~~~~~~~ -~i, —
~~

; A , D . , Ak ,
~~

; e~)

t-~imi1ar results follow for

Although we adopt the representation (14.17) in the rest of this pnp~-r , we

note that if ( 14.13) is to ho,i~d for the full orthogonal group , then ~ becomes a

function of the inner products ( 14.1 5) .  Moreover , since a~ ‘ J = d ~~/0, w- - may

reject redundant elements in ( 14.15) ,  and reduce $ to a function of

-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ e~

as found by Naghdi (1972 , Eq. (13 .36)) .  On the  other hand , the component d
3

(since it is nonzero) can either be chosen to be alway s> 0 or always -< O. In

each case d
3 

may be expressed as a single-valued function of (d
3
)
2 so that $ as

a function of the variables ( 14.20a ) can be expressed in t~-~ form ( 14.17) and

conversely. This means that there is no difference in results if we use the

orthogonal group instead of the proper orthogonal group for our invariance

conditions. Moreover, there are different , but equivalent , representations

for 4.

Returning to our main objective , with the help of (14.S) and (3 .22)-

3.21+ ) ,  for an elastic Cosserat surface we record below the expressions

representing (i) work by assigned force and ass i1ned director force and by con-

tact force and contact director force acting oi. any part P and ( i i)  supply of

ener ~~r arising from the total external rate of supply of heat and the total

curve flux of heat to P, both over a f inite time interval t1~~ t~~ t2 :

22. 
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I

~~= S
t2

1$ (f. ,.,+ Z .w d~ + S (N .v + M .w ~da 1 dt
t1 (‘

~
N + ,~ i” ’ ( I ~ ,~~l )

= 12 11 (r + r
N

) p  J~ - (q+ • V dsld t
t1 P ~~:1 ~P N 1 -

— , (14.: ’~ )

~ 
and K are t~ivc ’i1 by (3 

~~ ~l 
and (3 .2 5)

~~
, r esp ec t ive ly,  and F ’ ia dofi n~ l

F ’ = ~~ P € ’ da . ( 14.~ 3)

23.



5. The second law of thermodyna mics.

i’r t -v ic ’rs 1 y (Green and ~I :s~ hd 1 i~) ’( ’’ , l~)7~ , i it t he  context  ci ’ t h e  three—

- ‘~ens io nn l theory we h ave  dj :’~’~~ :’ t ’d the nature c ’t’ thermodynami c i rr o ’~- ’r s i b i li t y

‘r i :  !n ~ t’r s ’m a ma tht~ia tj cr i  1 l i t t - er ~ r ’~-t : t i on of a n t  yVlc ’flt ci ’ t a ’ second I :cW Cl’

~h”r mc, 1\ ’narnicr’ that 55 i t  i: hnr~’s: i b .  e cor n et e l y  t o  r ev e ,r :’ ‘ a pr~ c-a s which

- -ner~t v  is transformed into heat by t’r i o t  b i t . ” i i s r c  w 1’ . .  ow the sara ’ hrco- -J~U’e

nd reconsider a mathema t i ca l  j u t  er p r o t : t  ion L I  a second . : w a: ’pr -r:ate for

a ‘osserat  :‘urt’tice which admi t s  more than O T O  t -na s r - t a r :- f l  o l d  .~~~~~~~:!‘ i -i’ w~-rk

the subject :na do use of a C l a  iua — F~thent in - ‘q’ - i t  y I: en r .  - y n: c54~ ~1’a 
‘
~ ‘. 0 0

e~d is a dmitted ~0roen , ft ohdi and ~~~
‘ inwric i t ~ -

~~~~~~
-
~~ I: .-~h ,i i i~ - ‘? I .

For the sake of c la r i ty , we f i r s t  1L ’pOSe c t ’ sor ~e det ’in i  t i~ - t : a  . A att Ic of

the Cosserat surface C at time t , regarded a s- re pr .a c~i t b r a ~ a t h i n  ~h e 2 I - l i h c  body ,

is described by the position vector and the director the \‘ o1C’Cit ~~of (2 . 14 ) i~~~.

the t emperatures 8 and 8N ( N = 1 ,2 , . .. , K) throughout the aur t ’a,ce 
~~~ 

cef 
~~~ , 

together

with the constitutive response functions for the fie 1ds(3 .l~~~. Once t h o  r esp onse

:“or ,ctions are given , we then know the values or H and ~~~~ ~~ ~~
‘
~~2 

rind (0W 2 5

as well as K and E in (3 .25) 12 . A thermo-mechanical process or s imply a process

is a t ime sequ ence of states~ it is a continuous oriented curve in the space of

states , i . e . ,  the ( 8 ,8N , a
~~~

,d~ ,X j~~
_ space . Thus , a process may be defined by a

sequence of values of

(B,BN
,r ,d) (~~.l)

throughout d in the time interval 0 ~ t ~ ~~~. Similarly, the reverse process is a

process defined by a sequence of va1u~-s of (5.1) throughout d in the time

interval ~~~~~~~~ subj ect to the conditions

e(t) = 9(2a-t) , ~N (’t ) = ON
(Pa t)

( s ~~~~~ )

r ( t )  = r (2a-t)  , d( t )  = ~~(2a-t)

- 
- 214.
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~~~~

R eturning to our main objective , we observe that in any process the work

done by the external mechanical forces acting on P is positive or negative

depending on whether the externa l work is supplied to , or is withdrawn from , p.

In general , some of the work done results in a change of the kinetic rind internal

energies represented. by the first two terms on the right-hand side of (3.22)
3~

each of which may be positive , negative or zero. Also , part of the work done

may be positive with a corresponding extraction from P as heat or negative with

a corresponding absorption of heat by 
~~~

. We note that in the case of an elast ic

material , the different contributions to Di will vary in sign depending on the

process and- will not be restricted to be either positive or negative for all

processes. Consider any smooth process in the time interval O~~t~~ y and its

reverse process in the time interval ~~~t~~2ci. If the process is reversed in

the (B , 8 N ,a~~~,
dl ,X ~~

)_ sp ace in such a way that at the end of the process and

its reverse process the shell has returned to its original state with A 8 = O ,

= 0, Aa
c~ 

= 0, Ad
1 

= 0, AX. = 0 , Av= 0~ A w= 0 and , hence , Ae = 0, AT~ = 0, A ’T)N = 0 ,

~~ = O , A~~~= O , AN~~= o , AM~~= o , ~pi=o , ~~,=o , A~~~=° and AK =- O , A E = 0 , then all

the work done in the process is recovered as work in the reverse process’!’ This

recovery of work would not be poss ible if in every arbitrary process part of’ ~

always has a positive sign . With this motivation in mind , we assum e tha t for

any arbitrar y process in a dissipative shell only part of the work done is

recoverable as work in a reverse process , the rest being transformed into heat.

We therefore assume that in every process part of’ the work done is always

nonnegative. Then, if at the end of any process and its reverse process the

shell has returned to the same state, some of the work done is ilways trans-

form ed into heat. Reca lling that ~~~= O in ( 3 .2 14)2 in the case of an elastic

shell for all processes , we interpret the above assumption for a dissipative

t1f work is extracted in the process , then i,t is absorbed by the medium in the
reverse process.

25.
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shell by requiring that

0

For all parts P and a ‘ 1  proc eases -  where ~~~ I von by , . ;~1i ‘1 . t lcc •

are arbit r a ry and pw ha a a I r e  acly been as ~uJflecI I e iso c en t - I  in ie i i  a 1- l ’e 11 c ’W I :

that

K
pw = — p (c c fl p ($’+i)’e f ): 1) ’ f~~~~. y  +~f l .W 4 M~~.w ~ C

N ,: I “~ ~~ ~~~‘ ~~

for all thermo—mechanica l  proces ses . Al so From ~ .2 ~
) and (~~.I4) we have

~ $ 2$ p(g~ ’ 
~ ~N N ~~~ 

dt
N I

so that the external heat supplied to  a part  p of the surface of’ c 1~ bounded

above in any process.

,

~ 

________________________
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t’ . I ’ t~~~ar y of rt’sul t a from I hr ee ~Ll 11i~ ‘Us lena 1 m~ ‘I ’l t u I l ~ ( ‘U I  I l iL ’ory.

4 - ‘ t -  i - f r a t lrr,’~’ — . j  i s i o r t s  I t ’ n a l  b c aj y  (‘litt s ’d( jOLj i i i  I’~j i & ’ 1  j W ’~ n ~— a p i c s  , rind

l e ’ j 
~~. t - ~~~’ t id OS ‘ ‘ i I ’ d  I Vied by a L ’1 t i \ ’ s a ’ t - s ’~1 ‘ ‘erai 1 InC 0 ~1 (1 1 ,2 ..~ 

) . • t -  r

- ‘ he tac t i t  t~~ai s ’ ~~ t ~-i’ , r,’! a t  l y e  I - u a 1’ixt,’d o!’j~~i t t  • ( 1  ii L y p i  cr-i l rste’t i l l - ’

- i’ ’ - - l ~~” - ‘US I 0 ! t ’ ~ - ¼ cI~ i i i  I u s ’ p r c- sent  C L I I I  I c a i r t i  I 1 c i i  at t i m e t - .  l’hen ,

!‘~~ 
~~~~~~~ 

~~~~~~~ 
) 

~~~~
, 

= ~r - ~~e~ , = ,

, . . i )
i i ik I k

• 4~~~~
ô1-~ h~~~L., * ~~~~~~~~~~~~

wi. - r ’ 
~~

, and ar’ - cu~’ t t r  I n u t  r ind con t rava r i tu i t -  ba~ c V cc t ur’~ , rc Spcc l i v e l y ,

and gik nrc dov u’ i tLmi t .  niid coiit-ravariant metric tensors , respectively , and

is the Kron -cker delta . Also , a superposed clot den ote s  ma t erial time deriva—

tivt.- holding B fixed and v is the  velocity vector .

The stre ss vector t across a surface in the pres ent configuration WhOse

unit outward normal is n is given by

i~~ ik i it = n
1~ 

g’ n~,’r ~~ , ii = n~ g = n ( t s . 2)

wher e are the contravar iant components of the symm etric stress tensor . We

do not recall here the consequences of the cons ervation laws of the three-

dimensional theory since they will not be used explicitly in the present paper .

The parametric equation 93 
= 0 defines a surface in space at time t, wh ich

we assume to be smooth and non-intersecting. Any point, of this surface is

specified by the position vector r, relative t o  I-he i~tu ne  f ixed or i g in  t o  which

r is referred , where

r = r(9’,9
2
,t) = r~ (91,92,o,t~ .

Let the boundary of the three-dimensional continuum be specif ied by the  mater ia l

surfaces 
______________

t For conveni enc e , we adopt the notation for r in ~2. ~) ~ a I so for the s u r t a c’s ’ (o . 
~~

) .
This permits an easy i dentification of’ the two a i m r f a o c ’a .

27.
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93 = ~(~
l
,~
2
) , = ~(e1,e~) , (~~

<0<Bl , (6 . 14)

with the surface ~~~~~~ l~~~ng entirely between ( 6 . 1 4 )1 2  and a ma t erial surface

= 0 (o.’ ’ )

which is such that 93 = const. are closed smooth curves on the surface ( t s .5) .

i’ ince later we identify the surface described by (6.31 with the surface (2.3’)
~~
, ¶

it is convenient to adopt the notations for a ,a , etc. defined by (2.1) and

(2.2) also for the surface (6.3’).

We may now consider a general representation for z’ in (6.1)1 
as a

polynomial in 93 but in wha t follows we restriction attention to the

approximation

r = r + e3d , d = d (B~,t) (t -s .~ s)
rs — — ‘V —

in the bounded region 
~~~~~~~~~ 

Recaflin€ (6.1), the velocity vector is

then given by

v~ = v +  , W = , ( t - . .7)

Given the approx imation (6.6)
~
, it is known (see 1 e.g.1 Naghdi 1 L)’(2~ i’eos. 11,

12) that the field equations of the forms (2.15) to (2 .1P )  can be derived front

the three-dimensional field equations provided we identify ci in (u . t ’ ” w i t h  (2.~~~2

and adopt the definitions

= = g~~~3 * Xk N

Naa~ = T~d ~
3 , M~a~ = r T~9

3d ~3 rna~ = 

~: 
~

3d ~~ (t ’ . c) ’)

where 
~ 

is the three-dimension a l mass density . Also the assign ed for oe 1’ and

28.
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the assigned lirector force are related to the three-dimensional bod~r IOrC~

f per unit mass and to f - l i e  e f f e et ~ of the stress v ector (6.2)
~ 

over the

boundary surfaces (rs .14)~ by

_S t - t 1
Xf p f ~“ de~~÷ [ t g”~ (~

3)] ~ + [t g c~ (9~~) ]  , (o.lO )
— ,,¼

Q 
— 9- 93~~

- ‘ 1~~~

~ £ g’~9~d93 ~ [t-~~’ e3~ (~
3)] - ‘  ~ [tg29~~~ (93 )] , (u.11)

.-~~~~ 
9’~~ cr

where

3~, 11 ~w~~2 22 ~~ 2 33
T~~( 9  ) = [g (~~~~~~ j  g (—v ) +

+ 2(g1’2 ..~~~
. 

~~ - g113 
~~~ - g23 -~~~~~~ - ‘

~~}~~~ (o . .l2)

~e ~e

and is obtained fr om (o. ¼)) by replacing c~ by ~~.

1.4
-I’

29. -‘ 
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7. Thermodynazaical results from three-dimensional theory.

In thi s section we obtain some thernmodynamnical results for a a l i eU- l ike

body on the basis of the recent thermodynamnical theory of Green and Naghdi

(10’(’~’). Thus , along with the ( thr ee-dimensional)  temperature f ie1d~
~ * io = e (o ,t) > 0, we admit the existence of an external r a t - c ’ of t t rpp l y

_*
of heat -h per unit area acting across the boundary 3K of’ a region of space

K occupied by the body in the present configuration at time t .  Ala’- ’ , we as : cu ’rt ’
k j

the existence of an internal surface flu.x of heat -h = - ii (B , t n ) per unit .

area across each surf ace ~P which is th e boundary of an arbitrary part P of’

~~~~~~, We define the ratio of’ the heat supply r to ternperat iu’e 9 as

and call this the external rate of supply of enti’opy per uni t  mass .  i i m i  l a r l y

—* *we define the ratios of h and h to temperatur e , respectiv el y ,  as the external
H- *rate of surface supply of’ entropy k per unit area of ~ft and the interna l surface

* ~ i *flux of entropy k =k (
~ ,t ; n) per unit area of ~P . Thus~

II * *  —* ~ ‘—~r = 9 s  , h = 9 k  , h 9 k . (‘~
‘.l)

II k j
In addition , throughout K we assume the existence of a scalar field ‘fl =i~ (9 .t 1

per unit mass , called the specific entropy and an internal rate ot ’ production of
* * ientropy ~ = ~ (~ , t )  per unit mass. The contribution of the latter to the interna l

* 5 1
rate of production of heat is simply 9 ~ per unit mass.

We recall the balance of entropy in the t’orni

d * *  r * * I’ 51

p ‘T) dv = 
~ 

p (s + ~~ )dv - 

-~ 

Ic da ‘.2 ’
~

for every material volume occupying a part ~ in the present configuration . It

follows that k is linear in n , i .e . ,

k
* 

= 
*~ 

ii , = ~~~~ ,

wher e p is the entropy flux vector . Then , ñ-om (7.1) and (7.3) , h e p  .

~No conf\ision should arise from the notation = (~ l e2 
, o’~) for I-he c’oii v c ’c’t .ed

coordinates and the use of the symbol 9 in designation of the (three-dimensional)
tenpe ratu re field 9* and the sur face t~~nperatur es 

~‘~ 1 ‘~2’~~ ’ ‘9K ‘~~
‘
~ (‘r . t e l .

30.
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51
and we may define the heat flux v ector q by

= e . ~~~~ ~
- -

~ it ii h ’ -f t  c st  ~~~ ~~, the flc’ld equation corresponding to (‘.2) is

= p~~(s~ + i
_S
) - div ,

where

~ k ’ kd l v  p = g 2~ (p~ g~ )/~~ . ( ( . cc)

Now multiply (~‘,‘~1 by (93 1 N and itit-e~rate over an arbitrary part  P in the

present configuration. After using (‘7.3) and some straightforward manipulation ,

we obtain

dt ~ 
p *ll *(93) Ndv = 

* 
p

_S
(s* +~~

*)( B3)Ndv +$ N(93)~~
l
p*3dv

‘ P P P

- c *
(83)

N
k

k
da (N=l ,2,...) . (~~ )

Let an arbitrary material surface 93 = Q occupy a r eg ion P at time t and

let ~P denote the closed boundary of p. Furt her , let ~P refer to a part of ~P

specifi ed by the surface (cs .5 )  so that ~P =~~P = -~Pon ~~~~~~~~~~ and let

=W  -~~p stand for the complement of ~P in ~P . Then , for a shell-like

region bounded by the surfaces (t~.14l
1 2  and (6.5), fr om (7 .2 )  and ~~~~~~~~~~~ with

N= 1,2,... ,K , we can derive the balance equations (3.5) and (3.t~) without

introducing any approximnations ’t 
provid ed we make th e following ident i f ication s :

~ 3 ~ N
X1’)= p l ’ )g d e  , 

~
‘1’
~N J P ~~’)~~~

( 9 )  d9~ , (“.8)

5 1 _ S I 
~l; 51 1 ,~ 51 1 ‘~

= p a g~
’d9 — [k g ’

~ (9 ‘1 1 , — [k g ’
~ (9~)1 ~ 

( ‘ ( .~~ )

1’The details parall el simil ar developmet:ts in Naghdi (1012 , see . ii).

- 
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XS N 
= j

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
, (7.10)

51 51 
~~
‘ 3X~~= J p ~~~cd 9 , (7.11)

p
51~~1

g~~~~3)~~~~3 
, = N p

_ S 3
g 9 3~~~~l~j 9) , ~7.12 )

p~a~ = p~~~~2d’83 
, p~~a’~ = p*~~~~8

3~~d93 , (“ .13)

k = P~v , k~ = p
~~ , ~‘7.l14)

h = Bk , h
N = BN

k
N 

. (“.15)

We also recall the three-dimensional equation for the conservation of

ener~~r , namely

d ~ ~ * * * ~ * *  * * * r * * *
at J ~~~ • v 4’~~ ~~ dv = ~ +f’ ‘ V  ) p  d v +j  (t . V •k 9 )da , (7 . lo)

p •.~ — P — 
~ 

p — —
where c is the internal energy density. Suppose in addition to th e approx ima-

tion (6 .6)  and (6.7)  for the displacement and velocity vectors , we adopt the

approximation

B = e(e~,t )+E (e3)N 9N(9,t) , 9 > 0  (‘7.17)

for the temperature field . Then , for a shell-like region bounded by the surfaces

(6 .14)
1,2 

and ( 6. 5) , from the energy equation (7.16) we can derive the equation

of’ balance of energy (3.12 ) for a Cosserat surface provided we make the

identification

B 4 5 1 *~~~ 3X c = ~~~~p c g d B  . ((.18)

32.
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$. rI ’a t t ’lux “ectors and internal ener gy.

~uppose the three-dimensiona l shell-like body is in equ i libx ’itu it  wi th

= 0 and all functions are independent of the time. As a part ol’ tli t ’ir t-hermo-

dynami c r e s t r i c t ions  on cons t i tut ive  equations , Green and Naghdi (l.~
)-
~
’,’) have

adopted the classical inequality t

-q
51 

. 
~ o or -p~ 

. 
~~

(8.1)
* 51

g = grad e

for all time-independent t emperature fields. It follows from (
~
$.1)

2 
tha t

~B 
*- j g2p . d9 ~ 0 . (8.2)

• W ith the approximation (7.17) for 9 and the help of (7.12)
2 

and (7.13), it

is seen from (~~.2) that

K K
E ~~~~~~~~~~~ E ~~~~~~~~~~~~~~ ~~0
N=l “i N=1

for all equilibrium displacement and temperature fields. With the above

mot ivat ion , we add the inequality (8.3) for all equilibr ium states to the

thermodynamic inequality (5.1+) which was derived directly from two-dimensional

postulates.

Now suppose that the Cosserat surface C is at rest with

‘ ~~~2. ), ‘ .1~1

for all time and with the deformation gradient , director and director gradient

each constant for all time. Then, by ( 2 . 1 5 ) ,  p is independent of t .  In addition

we restrict the temperature fields to be spatially homogeneous so that 9= 9(t),

~Previous1y (Green and Naghdi 1970) in the case of an elastic shell, an Inequality
was derived using ($.1)i. Because of the different thermodynamic restrictions
employed here, it is more convenient to start with (8.11 2.

33.
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BN L ( N =  1 , . .  . , K ) .  Keeping these conditions in mind , from a comb ination of

(~~.I0~ a nd (3 . 13) we have

K K
p(r + E rN) 

- div(q + Z ~
) = p€ . (8 .5)

N= 1 N=l

‘
~n view ot’ .1+ ’, no mechanical work is supplied to the Cosserat surface C.

~ience , using ~~~ ,. 5) , the heat supplied to a part P of the surface during the

t tim.- interva l t
1 ~ t ~ t2 is

= 
~t2~

$ lr+ E r
N

p d~~~$ 
(q+ E ~

) v ~1sJdt = 
$ 

pa
t1 p N=l ~P N=l P t1

fuppose the shell is in thermal equilibrium during some period up to time t
1

with constant internal energy 
~~~~ 

and constant temperatur e 9. We assume that

whenever heat is supplied to the part P of the shell under the above conditions ,

the temperatur e e(t) throughout the part will be incr eased, i.e.,

t
[~~] 2 

> 0 whenever M > 0 . (8.7)
1

Provided that pa is continuous and remembering that p,  which is independent of

t , is positive and P is arbitrary , it follows from (8.6) and (8.7) that

e(t) - > 0 whenever €(t) - c
1 > 0 (8.81

for all t > t
1
.
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I i i  h~ r~ ’st of t h i s  paper we r e st  n e t  at t e n t io n  to  th ¼ - situat i i ’t t  where

K = I in  t i l e  t -~l t ’l  j e t ’  p~sl ’t 01’ the p~tp~,’i’ , 3UL 1 for ¼ ’Cl1\’~-I1I ’,’~. k’, We Si ’t

= (0 . 1)

‘ht ’ it’,c. us o,’t’ , 01 a s econd t.~-mp~-ra~ tu ’~’ t’i old ~ al iow s us to take som e ut’c~-unt 01’

v ~s ria  t Ions ct’cs s t ha - sh e! 1 t 11IL’k nt- s s but- ha.- not’ e genera sit - a t  ion

in w h i c h  K ~ I ca n be d~’~t t t  w i t h  in a simil ar way . W ‘ al so use i’’.’lat  i V t ’ k ita. -i~at Ic

measur os e 
~~~~~ 

.l~C ,  ins t ea d  of a ,d . ,X . ,

~B 1 I , ,r c~’$ 1 i~

e = , y .  = d - D. , K ,  = X. - ,\, .- 
1 i 1 l~ la 1~~

We cons ider the form o t’ the  lb’Lrnholtc. free t ’nergy fu n c t ion  in ~4 .17) whic h i s

suc h that the Cosscrat surface mode ls the main fe atures o t’ a I hree— dim~-ns icnal

t h in  e lastic  shell which has the I’d lc~~ing propt-rt les in it s referL -n-.’e configur a-

tion: (1) it is of uniform thickness and normals to t h e  middle surface m eet

the major surfaces of the shell at p oints  which are equidistant from the middl e

surface , (ii) it possesses isotropy with a center ot ’ sym metry and (iii~ it is

homogeneous and of’ constant temperature.

We choos e the initi al director D to he specifi ed by

D = DA
3 , (0 31

wh er e D is a nonsero constant in liz-se with (i 1 above. Th en , fr om t 11.li 1 ,

= — DB , ,~~, = • (0 . i~

The Helmholt.~ function (1+.171 may now he replaced by the  d ifferent- funct ion

$ ~~~~~~~~~~~~~~~~~~~~~~~ 
; D ,LW~~~,A )  , (0 .5 1

which by virtue of (iii) does not depend explicitly on 9~. Moreover , recalling

~~~~~~~~~~~~~~ ‘—~~~~~~~ ‘-— ~~~~~~~~~~~ -~~~ -‘ ~~~~~~~~~~~~~~~~



-‘ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ 

- 

~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~ 

‘
~ -- . ‘ ‘w~~w~~~q~ - “~~~~~‘T~T’ - - ‘

~~~ 1

(o.6), our Cosserat surface C models a three-dimensional body which in its
51

referenc e state has a position vector K spe~~ifiod by

K = R~~ 9
3DA~ . ~~~~~

At this stage we relax the condition (ii~ slightl y and assume that the thr~-c-

dimensional body is t ransversely  isotropic at each point with respect to the

t 3  *normals to the surface e = ~ (R = R 1 . Then , the three-dimensional  en ergy

function is form-invariant under the coordinate transformation

.

~

3 = - ~3 •~~(
l 2

) , 10 . 1)

where any other set of three-dimensional curvilinear coordinates w i t h

on the middle surface. Corresponding to the first of the transformations in

(9 .7 ) ,  we a ssume that the response function ~ in (9 .5 1 is unaltered in form

when

D -.-D , d- .- d , ~~ -.-
~~~~ ,

the other variables remaining unchanged. Thus

~(e~~ ,_V i,_I(i~ ,B,
_ t
~ ; -D ,-DB~~,A )

= ~~~~~~~~~~~~~~ D,DB
B~

A )  .

Since D# 0, $ may be reduced to a different functional form am-sd we h ave

$ = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

if r edundant elements are omitted. To complete the sp~,’cificatiozz that the

- 
three-dimensional shell is transversely Isotropic , we suppose that ~ is an

isotropic function with a center of syninetry. Moreover , in view of t-he second

— ~Complete isotropy is considered in §10, where constitutive cocfflcient,s i n
the linear theory are identified .

36.
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pi r c l  ‘. he cond i t  ion i 1 , we assum e that t h e  rm ,jor sur Va ces h- - il in
y -

it ~ ret’i -ronce cem~I’igurati- ’a are sp -o i t ’ i- -J i-y ~ = 1 h in  -~- .t ’~~, ‘~L ~~ ii i~ a

-‘ons~ a nt  tn . i  ~ = C is i ’s  :aidd e sai’t’aot’. \~~
- idont if , h~- j - f a c~ :‘ C In

- t ’~ a’ - ‘n a’ ‘on t’ i ci oat l i o n  i’y R = ~ a .d we h -mi s- - p i r - I s  ‘ -~ I s s. L~ r - a

~~d~-r t h-s z’ aas format i en

- —  
,
~~ . a~ — —  ~~~ .

~‘he t t’:u ls  format ion ~ ) .1 1 ) 1mm ’ - los I hat

• -

~~~~~
.

-. , e~~ -. e~~ , — -  • (0.12)

9~~~9 ,

i{ence, $ in 10 . i~ is subj  ect to  the further condit ion

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
;r t ,~~1~~~,A ’

= ~~(e ~ ,Dy
3 ,D y  ,1~K 3 ~~~~~~~~~~ I~~~B~~~.A 1  •

After imposing the restriction (0 .l3 ’~ it- is convenient, to make the special

choice D = l  for D whIch implies tha t h is the thickne3s of the shell. Thus ,

(0.1C~) reduces to the different form

$ = e
8
,q3,~

i ,K
3
,K~~ ,9,~ B~~ .A) , (o .li~

which is Isotropic with a cent-or of symmetry and which is also subject to the

restriction

-B~~ ,A )

= 
~~~~~~~~~~~~~~~~~~~~~~~~ 

. ç o , ‘~,1

L - 
.

~~~~~~~~~~ ~~~~~~~

. - --
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A similar discussion may be carried out for the entropy flux vectors p , ~~
and the int erna l product ion of entrop ies 

~~~~~~~~ 
except that ill of these func-

tior s also depend on ~~~~~~ ~~/~ eI~1 . In view of (9 .3)  and (9.i+), the entropy

flux vectors may be reduced to functional forms of the typo exhib i ted  by ~ in

~~~~ including -Jept ’nd~i~ct- also on ~9/~ 9~ 
and 

~~~~~~ 
l’}~us

= ~~~~~~~~~~~~~~~ 
; ~~~~~~, ~~~ ; D,DB~~,~~~) ,

p~ = ~~~~~~~~~~~~~~~~ ; .-
~~~~~

_
, 

-
~~~~

-. ; D,DB~~,A )

Under the transformations (9.8~ and (0.12), we require that

~~~ 
= ~~~~~~~ ‘ 

‘ 

~l 
=

be unaltered in form. After setting D=l , it fo llows that ~~~~~ reduce to the

different forms

= “a ( e K K -
~~ - ~~~- B Ap0 p

0 ~~ “13”L~ 3& ~~~~~~~~

-‘ p~ = ~~(e e”~3
’
~ 

,K
3 
,K~~ ,9,Ø, A~

_, -
~~~~

- ; ~~~~~~~~

which are isotropic with a center of symmetry and which are also subject to the

r estrict ions

-B~~ ,A )

= pU (e~~ ,~i3 ,~ ,K
3 ~~~~~~~~~~~~~ ~~-‘~~9~~: B~~,A )  , (0 .1~i)

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
!~~~,A 1  •

with s imilar forms for 
~‘~ l’ respectively. Fina lly , each function is also a

hemihed ,ral. isotropic function of Its arguments .

In order to make the above condit4-~rs~ explicit , we limit our attention to

L 

38.
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~

the linear theory of a thermoelastic Cosserat surface which is uts tm ’ -s : -d and

at uniform temperature in its reference configuration~
’ 

Then , for I h i s  tIR-& ’I’y ,

the posi t ion vector r and the director d assume the forms

d = D A
3

4 6

U = u~
Ai = ~~~~ , = ô 1

A~ =

where u ,ô and their space and time derivuti~es ar c’ sma ll. We also I Lmit  our

attention to a Cosserat surface which  models the main fea tures  of a three-

dimensional thin e]nstic shell as described in (i)-(iii) above; and , hence, we

set D=l throughout the rest of the discussion . The linearizc’d relative kine-

matic measures are

e
B~

%lj~ Pj , (~~.~~2)

where

= 
~
(u
~~~

+u
~ I
) - B~~u3 

= ~( , . 
~~~~~~~~~~~ 

‘

~ = I( + B  ~‘ = K  - Bk,
~~~ 

~~~~T 3 ‘ Y3~~ 3~ ~~~~~

(Q .23)

V3 = V~ = 
~~

+u
3~~~

+B
~
u
~ ‘ =

-p~~ = u
3~~~ 

+ B~ ~~~ 
+ B\1 ~ + 

~~~~ 
- B

~~
B
~
u
3 

-

and where a vertical line now denotes covariant differ entiation with respect to

the reference surface using Christoffel symbols calculated from

We assume henceforth that the reference configuration of t-he Cosserat

surface C coincides with its initial undeformed configuration and thus the

vector fields representing the force , the director force and the int ernal

director force are all zero in the reference - configuration. To avoid the

introduction of addit iona l notations , we now regard the force vector N and

tAt this point some differences will occur in the developments if we wish to
inc lude the eff ect s of sur fa ce tension or initia l rt ress ~n memhrnne theory
of a sur face , but this is straightforward.

39.
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the director force vector M as infinitesima l quantities measured per un i t  l ength

of curves in t h e  surface 3 in the reference c o n f i g u r a t i o n  of C~ 
so that  ~ Is

now the outward unit- norma l to curves In 3 and

N ’  , M t 4
~v a (a .~~~1

Moreove r~

= ~~
i
~i , = 

~~

i

~ i , rn = m~~~ (0 .2 , 1

and the equations of motion in tensor components become

BBV~~+pf B p ( v + k ~~~) .

p( ~ r + k ”~i )  .

and

-‘ 

- 

M _ V B + p L B = p(k~~~+k
2
~ ) 

.

- v + p i~
’
~ = p (k3’~

r + Ic2w)  A
3

where

NB3 = = mB + BBMa3 
, V3 = m3 - B

i i£ = 
~~~i ~~~ 

L A ~

and p denotes the referenc e dens ity .

Thr nin g to the temperature variables we replace 0 by 8 4- 9, where ~ 8 is

- ~The order of indIc es N ,Wi has been used by Naghdi (i0l ~ ) and in many ear l i e r
4 

papers in order to correspond to a usual not ation In  shel l theory . lii  I -ho f ir st
paper by Green , Nnghdi and Wainwright (i0t~h )  the opposite order ~~~~~~~ was used

- 

- 

and this ,yould he more in line with the cooruth ate free notat ions  of the form
- 

- N = N ~~= sometime s employed in the current l it e r a t u re .

~3O.
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constant , and assume that 9 and 0 and their derivatives are small . Then , wi th

= 
‘ p

1 
=

the equations of balance of entropy can be expressed as

p’fl = p(s +~~)-p
’
~1

p1~1 = p(s1 
+ 
~~ 

-

Also , from (3 .3)  and (3 .9) ,  retain ing on ly first  order terms we hav e

q = B p  , ~~~= O  , r = 9 s  , r1
= O  . 1 .31. )

We recall from the development of §1~ that most of the constitutive response

functions in the (nonlinear ) thermoelastic theory of a Cosserat surface can be

expressed in terms of the !-Ielmholtz free energy response function and that this

is mainly due to the use of the energy equation as an identity for all thermo-

mechanical processes. A similar situation exists, of course, in the lin earined

theory and leads to

$ = 
~
(e 

~~~~~~~~~~~ 
; B~~,A )  (0 .32 1

and

= i~~(~~L + ~t ) ~~i = 
~ 
.~L v~

’
ia i

_ _
~i ‘ 1 ~Ø

where

- ‘ 
N ’~~ = N ’~~ = N~~ 4 - I3~M~~ .

~l. 
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Further , if the various forces , director forces and the entropies all vanish

in the reference configuration , the respons e function ‘
~

‘ 
in (9.26) is a

quadratic function of e
~~

,Vj,pi ,9,O. This function is to be a hemihedal

isotropic function which satisfies the condition (9.15).

In order to obtain an explicit form for $, it is conven ient to introduce

the invar iant surface tensors

E = e~~~~~~AB , B = B~~~~~~~~A B

J p A~~~A~ , K = P3 P3~~ a~~A B 
, (9.3~

)

-~~ 
= P3~V~~~

®~~ , R

where E , B , K and H are symmetric . Then ,

$ = ~~~~~~
(,P,R,V 3

,9,0 ; ~.) , (9.36)

where p is an isotropic scalar invariant function of its arguments , such that

it is a qua dratic form in the variables e
~~ ,Vi,pja,9,O and

-B) = ~(E ,J,x ,P,R ,v3,e,O ; ~
) .

It follows (Rivlin 1955) that p is a lineax’ function of the following 39

thvariants

tr E , (tr K)2 , (tr J)
2 

, tr , tr

(9. 3(1
t r J JT , t r K , t r R  , —

112.
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~ 9t r E ,

(~~~. 3~- )

~~ t r J

V 3 
t r J B  

‘ V3 
t r E B  tr B V3 

tr J tr B

tr~~’ t r Jl ~~, tr E tr J tr B , tr E t - r E B t r B ,

( t r J B ) 2 
, t r JB  tr J tr B , t r E B  t r J B  tr B ,

( . l~c~)

t r E B t r J , (trEB)~ , t r E J t r B ,

t r K B  tr B , t r R B  tr B , tr P tr B

tr E J B , tr B J J T t r B

O t r J B , 9 t r j tr B , Q t r E B t r B , BO tr B
( - ) . ~4 I ~

OV3 t r B ,0tr E tr B ,0trJBtr B ,0tr E ,~

with coefficient s which depend on

(tr B)
2 

, tr B2 . (4-1 . 142)

Constitutive equations for N ’~~,W~,V~ ,%,’T~1 
(and hence ~fB ) may be obtained

from (9.33), (~~.314) and (9.38 ) to (9.141).

It remains to consider the constitutive equations for ~~~~~~~~~~~~~~~ in

determining these we must also use the identity ( 14 .8 )  which here becomes

= ~~ , (0 .144 1

and the inequality (8.3) which her e reduces to

p~~~ l
+ p . ~~, 4~~l .~~1 ~ o . (9. ) I )

143. 
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-iIn the linearized theory , we assume that p ,~~, and are linear hemihedr al

isotropic functions of degree one in e
~~ ,V i ,p i ~~~~~~~~~~~ with

coefficients which depend on A
B~
B
~~ 

such that p,
~~ 

and are subject to

the conditions (9.19) and (9 .20) ,  respectively. If we retain only -linear t erms

in (9. 143 1 , we see that ’1’

= 0 . (0 .)
~~~~)

Moreover , with the help of (9 . 1414 ) ,  it follows that

~~ = - a g - b Bg 1 , ~~~ = - a 1 B~
- - h 1~~

(o . 14t1 )
p~1 

= - b ~~ , p~~ = - a
3
B t r B - b

3
0 - c t r B E - d

3
trj

where

= (~e/~e~)A~ , = 

~~~~~~~ , (9.147)

a ,...,d
3 

are scalar functions of the invariants (9.142 ) and

b
2 ~ 

0 , 8~ ~~ 0 , b
1 ~ 

0 
‘ 

. g + (a
1
+b )B~~. ~~,+b 1~~ 

. ~ 0 (9 . 148)

- - for a ll

tF tjo (9.143) then determines the second order terms in ~~, but these are
not required here.

1414.
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10. Thermoelastic plate

When the referenc e surface 3 is a plane so that B = O , the results of tne

previous section simplify . In particular, we have

2p$ [~ 1
A~~A

Vô + 
~~

(A
~~

ABô +A
~~

A
~~
)]e 

B
e
6

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 
~3

A
~~ V V

~ 
+ ~8A p

3~ 
p38 + 2~9

A~~ e
8V3

+ 280V3
9 + 2B1A~~ e 

~
8 + 2B2A~~~p

8�

+ 8392
+ 8 140

2 
, (10.1)

and

pT~ = - (80v3 + B1A~~e~8 
+ 83

9) , p11k = - [~2
A~~p~~ + 81401

p = - a g  , ~~~ = - b 1~~ , (10.2)

= 0 , p
~1 

=- b
20 , p~1 = - b 3

Ø - d
3

tr J  ,

where the coefficients in (1o,1)-(l0.2) are constants.

We now suppose that the Cosserat plate characterized by (10.1) and (10.2)

and other relevant linear constitutive eq,uations models the small deformation of

a (three-dimens ional ) plate of initial constant thickness h and of an elastic

material with the following properties : Young ’s modulus E, Ibisson ’s ra tio ~~,

conductivity K , specific heat at constant volume c , uniform density p , coef-

* — *ficient of linear expansion c~ and initial constant temperatur e 9. Let B be

the position vector of any point of the ( three-dimensional) plate In its

reference state given by

* ‘:~R = R + 9”A ,D , (10.3)— — __)

where H is the position vector to the middle plane (e 3 =o)or  the plate , and let

the major surfaces of the plate be specified by 93 
= ~ h .  It’ these circumstances,

145.
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I
specific values have been suggested for most of the constitutive coefficients

occurring in (10.1) and (10.2) [see, e.g., Naghdi 1972). These values are

~ ~~=9:~
2
c ,

(10.1+)

‘ ~6 =~~~~~~~B , ~~~=~~~ 1,& h , ~~~= j~
T
~~4ih

3 
~ • 

I 
-

where

____ ________ 
EC = 

1-~
2 , B 

i2 (l-~
2 ) 

‘ 

~ 
= 2(l+v) (10.5

and

(10.6)

In order to obtain suitable values for the remaining coefficients we make

use of the results in §7 where all quantities now refer to the reference state

(10.3) and we choose

(10.7)

For a linear elastic solid it follows from previous papers of Green and Naghdi.

(1970,1977) that if only linear terms are retained, then

* 
= 0 , = - (K/ ~ )grad 8*

* * * (10.8)
* *  * g c Bp T ~ = j~~~~div u + 

— ,

8

*
where u is the three-dimensional displacement vector . We use the formulae

(7.9), (7.12), (7.13), (7.114), (10.8) and the approximation (7.17) for 8* to

obtain the following values for the coefficients 83,814,d3
,a0,

b1,b2,b3:
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p ch3 d , 0

8 128

Kit r~.h= l) ., = —  , S , iS-I —
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-
~ dept t 1.1050 Vs 1 1 -e b r  In- ~os s el’s t sur fn~’e

Jo  C0bfl~~ I t t  e t-h t I -ory , we n ‘cd o SI~ -ci fy \‘ s 1 for - 
~ ‘ t 1  1 t’ol’O 0

1 5 5 5-  1~-med direc tor f~ i’et’ ~ind the sss is~ut ’d sspr l i ~-s of ent r opy . and t c th is

end we eons ider t-wo problems i~ ’ ow. i- cr a di soussion 01 VS SoS Ct ’ lie a S 51

foi’co und ass 1~ i’R ’d di rector force 1n the esse of cit  her p r ol - i  em. t h e  l’cuii~-i’ is

r efer red  to Naghdi ( l~~i2 ,  Ch. E ) .  For the purpose ci’ ~i’ ~~ I t ’y I n~ I he a ss i  ~n

entropy supplies , we suppose in the f i rs t  i’i obl em tha t Clu’ d ir ect -  I Iieci ’y mcd e

a ( three—di men sion s  I p1 a t c  in frce space with the amhi ‘I l l -  ‘mper:t I S o  ci’ I he

surroundings at the major surfaces of t h e  plat.e h a v i n t ~ the va lue s

= ~t ~3 = ~~~~~~~~~~~~ , = ~ ~t 
~~~~ = -~~~~~~~~

_
~~~~ .

The t emperature across the f~ c~’s is discontinuous and we ussiune a r a d i a t  iou

type surface condition of the form

Ic = K($  - 
~~ at 8

3 
‘-h ,

10.11

Ic = K(8 - e_ ) at 8
3 

— - ~,u1

where K is a constant . Ther e are no entropy sources in the p int-c so ‘ iei l-  0.

With the help of (e.81 , (7.10), (7.11), (10.3), (iO.7) and (10.111 . We t’ius i that

pa
0 =-K (29- B~ -e pa 1 -K{~ it ’~~-~~h(9~~- 8 11 . ~~~~~~~

Collecting together values of ~~~~~~~~~~~~~~~~~~~~ fr om ( i O . ’l . I~l0 .e l .

( i o , o) and 10.12 ) and $ubstituting these into (0.301 y ields  the fol1c~ ing

differential equation s for temperatures B and ~ :

I

- - --
~~~~~

‘
~~~~~~~~~~
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- (~3
+A ~~e )  + p~ch8

1 + Khv2 9 - H ( 2 9 -  9~~- e ) = 0 , (10.13)

- 

~~ ~1 12v ) A~
8p

8 
+ + ~~~ 

- It[~ h2
~ - ~ht9~ - B f l  - ~~~ = 0 , (io. i 14) 

- 

-

where 1.1 = K9 and V2 
is the two-dimensional Laplacian. Apart from notation t- lit -~ e

results agree with those obtained from a three-dimensional approximation by

~ireen and Naghdi (l070 ,1Q7L)~ The in equality ~, 0 .148’I merely yields tile condition

0 which is already known from three-dimensional theory . If , from tile outset .

we had restricted the discussion to a theory with one temperatur e field 8, we

would only have the one t emperatur e equatIon (10.13) and we would obtain no

information about the t emperature variation across the plate .

In the second problem we assume that the region - ~ ii ~ ~ ~li is a material

interface between two other media in the regions 93 
~ ~li and ~ ~ii. The tempera-

ture and heat flux (an d hence also the entropy flux ) ar e continuous across the

boundaries. We again suppose that the t emperatures in the surroundings of the

interface at its boundaries have the values (10 .10) and we now suppose that the

entropy fluxes at these boundaries are

k = k~ at ~3 = ~h +t) , k
k 

= Ic at ~3 =- -~h-0 . (h ) . 1”)

Because of the continuity of temperature and in view of the representa t ion

(7.17) in the interface with K = l , we choose

9÷ = $ + ~~~ , 9 = 9 - ~hØ . (10. Ic’ ‘I

Since ic,~ is continuous at ~3 =± -~h, it follows from (t - I .81 , t 7 . -~
1 , (7.l0~ , ~l0. 31

and (10.15 1 that

t
~~ Cept for a misprint in Eq. (9.27) in ~ and Eq. ( 1+.~) in 1071. The value
of 8~ 

in these paper s should read: Bi = - I
~~
3cr/l2(l-211) with 1) being Fbisson ’s

ratio . 0

- - 
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pa = -k~~-k 
~~i 

=-~~~(k~~-k _ ) (10.17)

when The values of Ic and Ic will depend on the solutions of the field

equations for each region surrounding the plate and will be expressible as func-

tions of 8+ and 8 , respectively, and can then be written in terms of 9 and 0
by (10.16). If the bounding regions are elastic the heat conduction vectors

for each will be subject to the usual r estr ictions which will affect the values

of k+,k but these restrictions do not arise from any inequality associated

with the interface. Equations for the temperatures 9,0 are then given by

(9.30), (10.2), (10.9) and (10.17) and only differ fran (10 .13) and (10.11+) as

far as the terms in ps and ps
1 are concerned.

It is clear that results for a membrane interface in which the director is

• omitted fr om the kinematic variables can be obtained as a special case. If two

temperatur e fields are admitted we still have two equations for the temperatures

which for the second problem discussed above reduce to

~~ [~~~~~~ A~~ e~~~+ p *ch9J _~ .hv2e + k ÷ + k  0 , (10.18)

~ ______ - 
~~~~ V

2
Ø + k,~ 

- k + 2K0 = 0 (10.19)

for a membrane interface. There is a considerable difference between such

equations and those of ~vb~rdoch (1976). If 0 is taken to be zero then, fran

(10.16) and (l0 .19’I , we see that the theory only applies to problems for which

~~~~~~~~~~~~~~~~~~~~~~~ 
k÷ = k .

Acknow1ed~ nent. The work of one of us (P.M.N. ) was supported by the U.S.
Office of Naval Research under Contract N000114-75-C-01148, Project NB 0614-1436,
with the University of’ California , Berkeley .

149.

—----— - ---- 
-



___________________________________ - - 

1T~ 1~~~II

References

Carroll, M. M. & Naghdi , P. M. 1972 The influence of the reference geometry
on the response of elastic shells. Arch. Rational Mech. Anal. 148, 302.

Green , A. E. ~ Naghdi., P. M. 1970 Non-isothermal theory of rods, plates and
shells. m t.  J. Solids a nd Structures 6, 209.

Green, A. E. ~ Naghdi, P. M. 1971 u n uniqueness in the linear theory of’
elastic shells and plates. J. M4canique 10, 251.

Green , A. E. & Naghdi, P. 14. 1976 Directed fluid sheets. Proc. Roy. Soc.
Lond. A ~~~~~~ 141+7.

Green, A. S. & Naghdi, P. M. 1977 On thermodynamics and the nature of the
second law. Proc. Roy. Soc. Lond. A ~~~~~~ 253.

Green, A. F. & Naghdi, P. M. 1978 The second law of thermodynamics and cyclic
processes. J. Appi. Mech. To appear.

Green , A. E., Naghdi, P. M. & Wainwright , W. L. 1965 A general theory of a
Cosserat surface. Arch. Rational Mech. Anal. 20, 287.

Gurtin , M. E. & Murdoch, A. I. 19714 A continuum theory of elastic material
surfaces. Arch. Rational Mech. Anal. ~~~~~,, 291.

Gurtin , M. E. & Murdoch, A. I. 1975 Addenda to our paper on a continuum
theory of elastic material surfaces. Arch. Rational Mech. Anal. ~~~~, 389.

Murdoch , A. I. 1976a A thermodynamical theory of elastic material interfaces.
Quart. J. Mech. Appi. Math . ~~~~, 2145.

Murdoch , A. I. 1976b On the entropy inequality for material surfaces.
J. Appi. Math. Phys. (ZAMP) ~~~~, 599.

Naghdi , P. M. 1972 The theory of shells a.’d plates . Fliigge ’s Handbuch der
Thy. Vol. VIa/2 ( edited by C. Pruesdell), 1425.

Naghdi, P. M. 19614 On the nonlinear therinoelastic theory of shells . Proc.
lASS Symp. on non-classical shell problems (Warsaw 1963), p. 5.

Rivlin , R. S. 1955 Further remarks on the stress-deformation relations for
isotropic materials. J. Rational Mech. Anal. 14, 681.

Zhilin , P. A. 1976 Mechanics of deformable directed surfaces. m t. J. Solids
and Structures 12, 635.

50.

~~~~~~~~~ 
‘
~~ ~~~ - ~~~~~~~~~~~ — -— -- -— ---— - -~~~~~~~~~ ~~~~~~~~~~~~~~~ - - — — -- --—- ~~-~~~~~~~~~~~~~~~~~ - -—---~~-- --



—•— — ~~ — — -=--~
‘““

~~ 

-.‘- - — -“,——.--—-—-“—~
.-- “

_ __ - ‘ _ _ _ _-w,--w-w -,,~,~~ — ~
_
~ ;“7—.--

~~ -’-~

______

_ 

~~~~~~~~~~~~~~~~~~~~~ 
— -.

‘
.—----‘— ‘~--- ---‘——---‘ -.—— .---.-—-‘- -- ,“— ---------— -—.-- --—-,——--—- ---- - — - -- -

~~~~~
- 

—- _ _

V

UNCLASSIFIED
S1CURl ’~~ C L A S S t ~~l C A T t O N  OF T s I S  P A( .E (~ 7.en 1).,. Enia~•d) “ 

-

REPORT DOCUMENTATION PAGE
I ~~c Fc ~~~~ ~~~~ MØ t ~~:: f1 GOVT A C C 1 S~ IO’ ~ NO 3 R E( , i P i [ N ~~’ S C A T A I OI. NL~~(~I W

_ ‘ i ’~~ )‘~~ ‘~~~~ (‘~~~~~~~ 7
’ 1 _____ _____ _______

a ‘ “ ~~E :.~‘d 5.~~~’,,/~~ i 
$ T ’ v rl O~ RL POP~ & PL .I~~D~~ -~~~~ k t ’

~i ~~a’T ’ f l ~~i 1 fI’. C t  S ill t he h ’ -
‘ i-y I - , ~- eLn i L ’n 1 h ~- : ~~ t

~

S C O ~. T a A C T  O R ( ~~~~~~~~~~ u~~L~~- . )

A.  F. ;r e n a :~~~j U . ~~~. T,a uid i N0001’i — ‘
~ ~ — C— 0iJ.~ _—

S PE~~F~ ’QMIi,l G CR~~A N i Z A T I O N  NAME AND ADDR ES S 0. PM O C.N A M ~~~~~~~ ~~~~~~~ - C ~~~~’ ASK
- A R E A  $ AO~~P, ~NIT ~ j~~~~ RS

t - as rU ~ient :f Mechani cal  ~n~ ineer 1ng ~
University -f - ‘~lifornia NP o~14-1+~

I ::rnia ~ 14 I 20
C~~N~~~ O L L I N G  O F F I C E  NAME AND A OO R ESS 12 REPORT D A T E

t r u st - i ra ‘,~ ~‘~ ‘ ch~aics ~r~ nch st-pt ~-ml-er l~~1 c
ffice f ~o’va~ Research I I -  NU N R O F  P A G E S

A r l  i n~ tcr~, \ i rginia 22211 50
14 M~~~t TOR iNG A GE NCY N A M E  A A DOPCSSIII dill.:. ” ~~~ C~- , : ,~ Iiin d Off ice )  15- SECURITY  CLASS.

• ISa . DE C L A S S I F I C A ’ r i i N G R ~~C’ i~~G
SCHEOULE

IS. DISTRIS UTI ON S T A T E M E N T  (of This R.p oz()

App roved tU-r public release; dist-rir~ t-ion ia d imited

17. DISTRIeuTI ON S T A T E M E N T  (of fi. .b.t,.cf .~ t.r.d Sn aloek 20. If d,lI.r.n t fro~i R.port) —

IS SUPPLEMENTARY NOTES

I$, K EY WORD S (Coniinu . on ta’sr a. •ltis It n.c...~~y ond tdsnIlty by block nim.b.t)

Thermom - chan ics of shells , direct approach , theery of a Cess ,-r a t
sur face .  tempera tur e changes along the shell thickness. ~I~ei’~sod ,’.ts-~ il
restrictions , nonlinear thermoelastic re sp onse .  linear theory of
thermoelastic plates , determination of c cn st i t u t i v e  cot’ff ie t c s t s .

20 A SS ? RA C T  (CO.,tIIflsS on ra..ta. aid. It n.c..ury ond Sd.nliS ~ by Wcc ~ ~~~~~~~

This paper is concerned wi th  thermanechar ics ot ’ thi s she11~ I-v a
direct approach based on the theory of a Co~’-s t -ra t- surface compr i s in ~
a tw~-dthensional surface and a single director attached to everypoint of the surface.  In almost all prc~ ieu~ developments ci’ the
thermo-mechanical theory of shells by direct approach~ csi~y one
t emperature field has been admitted . This allow s for the characterI-
zation of temperatur e changes a long some ret’erene,- i i rt’~ce . such as

~
‘coutiiaied)

DD 
~~~~~~~ 

1473 £ou~~ION DF I NOV $1 IS OSSOLITI I’~~ l’~~e i~’ ~J)
S/N OIO . O t 4 ~~ 660I ~

_ _
~~

__ ,_L., _ _ .

SECURITY  CL & $ S I F~ C A T I O N  ~~ INIS ~~A G( ( 1i.n (‘a’. f, ,i.r,



— 

F: ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASS IFIF.D 
_____ ________

- ~, ~. Ij W i t  t CL A SSI F IC £ ~ ION - )F  Y N I S  PA .1 - Rhon )a~~ E~~I. ..J)

-

~ I 

20 Abstract (cont inued)

the middl e s - i r f : c t ’ , ol’ the (t1ir t’c-~ii~:er i ona l )  rh  I ~ - l ike body , bu~
not for  t emperature cha nges ni os~ - t :~ sI~ -I 1 ~~~~ . A m:~ in
purpose :f ~ro- Uz’eo en t  study is t - ’ t:c~ i - c~- t e t,~~~- ia’~ ‘~~

- r e r f .  ot
isto I be the orv ; ~ind , in the context .-f  t~ t b~ ~-x ’y of a ‘

~ scm t
su r f ace .  t~’j s  is iichi,’v:’d by a r -o ‘~ t an i - ro c’ . t o  h ~-:: c~~. ~‘h~i t. i c~
~~reen a~. I  Naghd i b - h f )  which provides a ~~ sr ’nl way ci ’ s~~-oduc i ng
two ~or ~cr ’: ) temperature fields nt ~ich so~ ~er i ’~l ro i~~ - ::  ‘ be
S u’i’~o~- . :~:~,rt fr-cm full discuss boo:. of t l~~~-::om c : o i i ~ s ~he1ls
nn d thcr ~.:c.vsamj cal rest r i c t ion s  iris i:~ fi-o~ ~r~c e C C ~~~: ~~ ot
thermod.y:o~.sics for she r , ~t t e t :t io ’ . is ~-iv~. ‘: ~~~~

- a ciisc~zss ton s-t ’
symmetries (thclxd isg material syris:cI n o r  ) ssd tb - - m i ’ . !2ect -s  in
the sits-oar s’ocry of e~sstic sh - 1 ~s wi th  ~icf .nili’J diso-:s -si~-n
of the 1i f , -~~r thecry ci’ e l a s t i c  p i o t t - 5 .  -

— —

~~ UNClASSIFIED
SECU RIT Y C L A S S Iy IC A T I O N  O~ T N ’ , ° * G L r W 7 ~.n 5s~. I -- - - . - .  I’- 

- -~~~~ ~~~-- - —._ - — - -  -~~~ . — - ~~~~~~


